Summarizing a Set of Data with Iditarod Race Statistics

Developed by: Brian Hickox, 2019 Iditarod Teacher on the Trail[™]

Discipline / Subject: Math

Topic: Mean, Median, Mode, Range, Data Analysis, Adding Decimals, Subtracting Decimals, Dividing Decimals

Grade Level: 6, 7, 8

Resources / References / Materials Teacher Needs:

- Mean, Median, Mode, and Range worksheet/ packet
- Iditarod Race Archives
- Access to the Iditarod website <u>www.iditarod.com</u>

Lesson Summary:

Students will summarize a set of data using a measure of center, such as mean, median, or mode, or a measure of variability, such as range. They will research Iditarod race archives in order to find a set of data to summarize.

Standards:

<u>CCSS.MATH.CONTENT.6.SP.A.</u>² Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.

<u>CCSS.MATH.CONTENT.6.SP.B.5.C</u> Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.

CCSS.MATH.CONTENT.6.SP.B.5.D Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

<u>CCSS.MATH.CONTENT.6.NS.B.2</u> Fluently divide multi-digit numbers using the standard algorithm.

<u>CCSS.MATH.CONTENT.6.NS.B.3</u> Fluently add, subtract, multiply, and divide multidigit decimals using the standard algorithm for each operation.

<u>6.SP.A.2</u> Understand that a set of data collected to answer a statistical question has a distribution, which can be described by its center (median, mean, and/or mode), spread (range, interquartile range), and overall shape.

6.SP.B.5 Summarize numerical data sets in relation to their context, such as by reporting the number of observations, describing the nature of the attribute under investigation, including how it was measured and its unit of measurement, and giving quantative measures of center (median and/or mean) and variability (range and/or interquartile range) as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data was gathered.

<u>6.NS.B.3</u> Fluently add, subtract, multiply, and divide multi-digit decimals using the standard algorithm for each operation.

Learning Objectives: 1. Students will be able to summarize a set	Method of assessment for learning
of data using a measure of center, such as mean, median, or mode, or a measure of variability, such as range.	1. Mean, Median, Mode, and Range have been successfully found for Joar's data and Dallas' data. All work has been shown.
2. Students will be able to add and subtract decimals.	2. Students will research the Iditarod race archives, complete a table and fill in the corresponding data based on speed, and then find the mean, median, mode, and range. Students will share their findings.

Procedural Activities

1. Review the definitions of mean, median, mode, and range.

2. Review the examples of how to find the mean, median, mode, and range of a data set.

3. As a class, look at Joar's 2018 Iditarod Race Statistics and complete 1 (a, b, and c) and 2 (a, b, and c).

4. Put students in groups of 3-4. Have students look at Dallas' 2016 Iditarod Race Statistics. As a group have them complete 1 (a, b, and c) and 2 (a, b, and c). When all groups have finished, check for understanding by reviewing as a class.

5. Make sure all students have access to technology and the Iditarod website.

6. Model how to navigate through the race archives.

7. Have students independently research the archives, select one Iditarod Race finisher, create their own table, and find the mean, median, mode, and range of the data.

8. Share the results with one another and/or display the students' work around the room.

Materials Students Need:

- Mean, Median, Mode, and Range packet
- Technology to access the Iditarod Race Archives
- Optional- chart paper to record their independent data findings/ research

Technology Utilized to Enhance Learning:

- Chromebooks, Ipads, Desktop Computers, etc. to access the Iditarod Website
- Visualizer to review problems as a class

Other Information:

N/A

Modifications for Special Learners/ Enrichment Opportunities:

- Provide access to a calculator
- Reduce the number of "checkpoints" / data which the student (s) must record and summarize
- Provide a reference sheet with definitions and examples
- Graph the data on a scatterplot
- As a follow-up lesson, have students use mean deviation in order to compare how consistent a particular musher is
- Have students make predictions for this year's upcoming race based off of their findings

Name:	
Block:	
Date:	

Statistical Measures

Mean	The sum	of data d	livided by	/ the num	nber of va	alues in the data set	
(10.77 + 5.71 + 6.78 + 5.65 + 8.58 + 5.71) ÷ 6 = 7.20							
Median	The mide	lle data v	alue of a	set			
	5.65	5.71	5.71	6.78	8.58	10.77	
	(5.71 + 6.78) ÷ 2 = 6.245						
Mode	The data	value that	at occurs	most fre	quently		
	5.65	5.71	5.71	6.78	8.58	10.77	
	Mode = 5.71						
Range	RangeThe difference between the greatest value and the least value						
	5.65	5.71	5.71	6.78	8.58	10.77	
10.77 – 6.65 = 4.12							

Key Concept: You can summarize a set of data using a measure of center, such as the mean, median, or mode, or a measure of variability, such as the range.

The following table shows musher Joar Leifseth Ulsom's race speeds during his 2018 Iditarod Race. Use the data to answer the questions that follow.

Checkpoints	Speed (mph)
Willow to Yentna Station	10.54
Yentna Station to Skwentna	4.89
Skwentna to Finger Lake	8.30
Finger Lake to Rainy Pass	8.53
Rainy Pass to Rhon	8.75
Rhon to Nikolai	5.67
Nikolai to McGrath	6.97
McGrath to Takotna	6.92
Takotna to Ophir	7.89
Ophir to Iditarod	5.13
Iditarod to Shageluk	7.78
Shageluk to Anvik	7.61
Anvik to Grayling	6.28
Grayling to Eagle Island	N/A Note: Eagle Island was not an official checkpoint this year due to weather
Eagle Island to Kaltag	5.09
Kaltag to Unalakleet	5.51
Unalakleet to Shaktoolik	7.16
Shaktoolik to Koyuk	6.09
Koyuk to Elim	6.78
Elim to Golovin	N/A
Golovin to White Mountain	6.76
White Mountain to Safety	6.93
Safety to Nome	7.06

1. The table shows Joar's race speeds between checkpoints throughout the Iditarod. Find the mean.

a. Find the sum of the speeds.

Sum = _____

b. Next, **DIVIDE** the sum by the number of values in the data set.

_____÷____=____.

c. The mean of Joar's speeds during the 2018 Iditarod Race is ______.

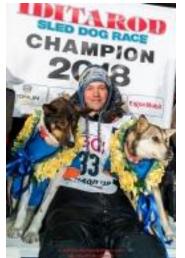


Photo by Jeff Schultz / IditarodPhotos.com

2. The table shows Joar's race speeds between checkpoints throughout the Iditarod.

a. Find the median of the data. List the data in order from least to greatest.


_____ = _____

Median = _____

b. Find the mode of the data.

Mode = _____

c. Find the range of the data.

The following table shows musher Dallas Seavey's race speeds during his 2016 Iditarod Race. Use the data to answer the questions that follow.

Checkpoints	Speed (mph)
Willow to Yentna Station	10.20
Yentna Station to Skwentna	8.87
Skwentna to Finger Lake	7.64
Finger Lake to Rainy Pass	8.96
Rainy Pass to Rhon	8.30
Rhon to Nikolai	5.67
Nikolai to McGrath	8.83
McGrath to Takotna	8.18
Takotna to Ophir	9.14
Ophir to Cripple	5.54
Cripple to Ruby	7.25
Ruby to Galena	8.72
Galena to Nulato	5.66
Nulato to Kaltag	11.75
Kaltag to Unalakleet	6.53
Unalakleet to Shaktoolik	8.11
Shaktoolik to Koyuk	5.51
Koyuk to Elim	5.68
Elim to Golovin	N/A
Golovin to White Mountain	8.19
White Mountain to Safety	9.48
Safety to Nome	8.25

1. The table shows Dallas' race speeds between checkpoints throughout the Iditarod. Find the mean.

a. Find the sum of the speeds.

Sum = _____

b. Next, **DIVIDE** the sum by the number of values in the data set.

_____÷____=____.

c. The mean of Dallas' speeds during the 2018 Iditarod Race is ______.

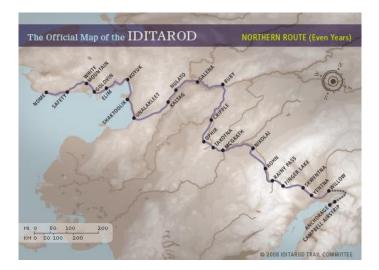
Photo by Jeff Schultz / IditarodPhotos.com

2. The table shows Dallas' race speeds between checkpoints throughout the Iditarod.

a. Find the median of the data. List the data in order from least to greatest.

_____=____=

Median = _____

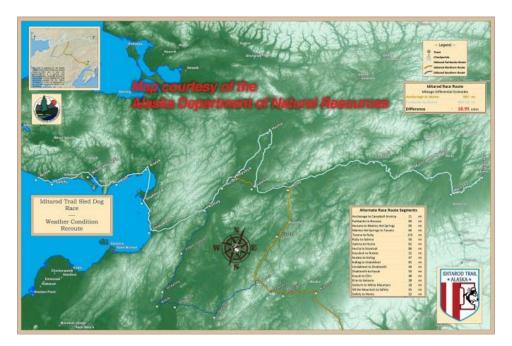

b. Find the mode of the data.

Mode = _____

c. Find the range of the data.

Research the <u>race archives</u> on the Iditarod website. Select one musher who has finished the race, from any year, and record his or her race speeds between the various checkpoints on an appropriate table (i.e. northern route, southern route, or Fairbanks route). Then, find the **mean, median, mode**, and **range** for your data set.

*You can use one of the tables below or you can make your own.


NORTHERN ROUTE

MUSHER:	Year:		
Checkpoints	Speed (mph)		
Willow to Yentna Station			
Yentna Station to Skwentna			
Skwentna to Finger Lake			
Finger Lake to Rainy Pass			
Rainy Pass to Rhon			
Rhon to Nikolai			
Nikolai to McGrath			
McGrath to Takotna			
Takotna to Ophir			
Ophir to Cripple			
Cripple to Ruby			
Ruby to Galena			
Galena to Nulato			
Nulato to Kaltag			
Kaltag to Unalakleet			
Unalakleet to Shaktoolik			
Shaktoolik to Koyuk			
Koyuk to Elim			
Elim to Golovin			
Golovin to White Mountain			
White Mountain to Safety			
Safety to Nome			

SOUTHERN ROUTE

MUSHER:	Year:		
Checkpoints	Speed (mph)		
Willow to Yentna Station			
Yentna Station to Skwentna			
Skwentna to Finger Lake			
Finger Lake to Rainy Pass			
Rainy Pass to Rhon			
Rhon to Nikolai			
Nikolai to McGrath			
McGrath to Takotna			
Takotna to Ophir			
Ophir to Iditarod			
Iditarod to Shageluk			
Shageluk to Anvik			
Anvik to Grayling			
Grayling to Eagle Island			
Eagle Island to Kaltag			
Kaltag to Unalakleet			
Unalakleet to Shaktoolik			
Shaktoolik to Koyuk			
Koyuk to Elim			
Elim to Golovin			
Golovin to White Mountain			
White Mountain to Safety			
Safety to Nome			

FAIRBANKS ROUTE

Year: _____

MUSHER: _____

Checkpoints	Speed (mph)
Fairbanks to Nenana	
Nenana to Manley	
Manley to Tanana	
Tanana to Ruby	
Ruby to Galena	
Galena to Huslia	
Huslia to Koyukuk	
Koyukuk to Nulato	
Nulato to Kaltag	
Kaltag to Unalakleet	
Unalakleet to Shaktoolik	
Shaktoolik to Koyuk	
Koyuk to Elim	
Elim to Golovin	
Golovin to White Mountain	
White Mountain to Safety	
Safety to Nome	